If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+10n-36=0
a = 4; b = 10; c = -36;
Δ = b2-4ac
Δ = 102-4·4·(-36)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-26}{2*4}=\frac{-36}{8} =-4+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+26}{2*4}=\frac{16}{8} =2 $
| 9x=−18 | | 4414b=242 | | 1-0.4x+0.12x^2=0 | | -2x-5+5x=-32 | | 38+7k=(k+8) | | 0=12x^2-63x^2+36 | | 2x–7=-1 | | 4y+2=2y-1 | | -4y+8y=0 | | -116-11x-2x=183 | | 4x^2=4x+19 | | C=32h+20 | | 4.41a=9.0405 | | 18-x=56 | | -25/8=k-3/4 | | 5x–1=5x+4 | | 3.5d+9.75=1+5.2d | | 2n=+5 | | 15+9x=5x+35 | | 9=n19 | | 3n/8=0 | | 200-3*x=155 | | 8x/3+x/6=18/12 | | 6n+3=2n+6 | | (6x-3)=(6x-4)/2 | | 6^7x-4=3^2x-1 | | 3(5-3x)=-18 | | 3m+2m+18=5 | | 27=-5/3r+17 | | 3(3x-6)=4(2x-5) | | 23x-14-7x=6 | | x=18.5–5 |